Главная
Термоэлектрический преобразователь из кремния
Нано-био
ДНК-транзистор
ДНК в нанотехнологиях
Контакты
Увлекательные статьи
 

 

Полезные статьи
Контакты
ДНК в нанотехнологиях
ДНК-транзистор
Нано-био
Термоэлектрический преобразователь из кремния

ДНК в нанотехнологиях

Последнее время все чаще появляются исследования, в которых в качестве конструкционного материала при создании наноразмерных устройств используются природные макромолекулы (например, ДНК). Наиболее функциональный инструмент для манипуляций на таком уровне — это Сканирующая Зондовая Микроскопия (СЗМ). Приборы этого класса позволяют одновременно исследовать единичные молекулы и осуществлять манипуляции над ними. Рассмотрим три наиболее важных аспекта СЗМ, которые нужно учитывать при работе на молекулярном уровне.

Манипуляции на малых полях

Влияние остроты зонда на разрешение

Маленькие особенности рельефа могут быть не обнаружены, если радиус зонда слишком велик. При использовании стандартного зонда ширина молекулы ДНК на изображении составляет 10—20 нм, тогда как реальный диаметр — около 2 нм. Размер молекулы на АСМ изображенииНа скане показаны короткие фрагменты poly(dG)–poly(dC) ДНК, закрепленные на модифицированном высокоориенти­рованном пиролитическом графите (см. далее). При использовании DLC зонда (радиус кривизны острия ~1 нм) можно увидеть расплетенные однонитевые участки (жирная стрелка) и даже спиральную структуру молекулы (тонкие стрелки). Более подробную информацию можно найти в статье Д.Клинова “High-resolution atomic force microscopy of duplex and triplex DNA molecules”. Nanotechnology (2007), V18, N22, p.225102.

Крепление ДНК: подложки и процедуры

Крепление на слюду с помощью неорганических катионов

Кольцевые молекулы ДНК, которые закреплены на поверхности слюды с помощью ионов Mg2+. Предварительная обработка слюды водой увеличивает поверхностную плотность отрицательных зарядов благодаря вымыванию катионов. В этом случае прикрепление ДНК более сильное и происходит быстро, поэтому на изображении молекулы выглядят компактными (А). Свежесколотая поверхность имеет более низкую поверхностную плотность зарядов, это делает возможной латеральную диффузию молекулы в процессе крепления – она «расправляется» (B).

 

Стабильность АСМ при прецизионных и долгосрочных исследованиях

Манипуляции на малых полях: низкий термодрейфТемпературные дрейфы становятся серьезным препятствием при проведении долгосрочных экспериментов на малых полях. Обычно величина дрейфа в лучших коммерческих АСМ приборах составляет порядка 10—15 нм в час. В силу этого эффекта исследуемые образцы размером в десятки нанометров могут быть попросту потеряны в процессе наблюдения.

 Изображения слева иллюстрируют возможность манипуляций кремниевыми нанотрубками, схожими по своим размерам с ДНК, с помощью АСМ зонда. Пара изображений справа показывают те же объекты в долгосрочном эксперименте: смещение за 7 часов мало и наблюдаемые частицы остаются в поле зрения.

 

Датчики перемещения (closed-loop), в особенности, важны при необходимости возвращать зонд в определенное место на скане (например, при манипуляциях). Обычно из-за собственного шума датчики не используются в масштабах меньше 100 нм. NTEGRA Therma позволяет производить CL-коррекцию на сканах меньше 10 нм. Изображение показывает атомную решетку слюды, полученную с использованием датчиков обратной связи.

 

Rambler's Top100

© nanotehnika.ru, все права защищены